

Code	Project	Release	
ST02	A47-A	E	TECHNICAL DATASHEET

ABSOLUTE MAGNETIC SENSOR AGM

GENERAL FEATURES

- Linear magnetic sensor, with direct reading of the absolute position.
- Resolutions up to 1 µm.
- Measuring length up to 30 000 mm.
- · High-speed serial interface.
- · Contactless reading.
- · Warning indication through LED.
- · Extremely easy and fast mounting of the entire measuring system, with wide alignment tolerances.
- · Small size, to allow installation in narrow spaces.
- · Option: 1 Vpp analog signal.
- · Axial or radial cable output.

MECHANICAL AND ELECTRICAL CHARACTERISTICS

MECHANICAL

- · Magnetic sensor with die-cast body.
- Possibility to fix the magnetic sensor with M4 screws or with through M3 screws.
- Wide alignment tolerances.
- · Robust sealed cable exit.

ELECTRICAL

- . Option: 1 Vpp A and B output signals, with phase displacement of 90° (electrical).
- Serial protocol SSI BiSS.
- Reading through positioning sensor based on magneto resistance, with AMR effect (Magnetic Anisotropy).
- Electrical protection against inversion of power supply polarity and short circuits on output ports.
- CABLE:
 - Shielded twisted pair for analog signals (SIN, COS).
 - The cable is suitable for continuous movements.

SERIAL OUTPUT VERSION

- 6-wire shielded cable \varnothing = 7 mm, PVC external sheath, with low friction coefficient, oil resistant.
- Conductors section: power supply 0.25 $\mathrm{mm}^2;$ signals 0.25 $\mathrm{mm}^2.$
- The cable's bending radius should not be lower than 70 mm.

ANALOG + SERIAL OUTPUT VERSION

- 10-wire shielded cable Ø = 6.2 mm, PUR external sheath.
- Conductors section: power supply 0.29 mm²; signals 0.10 mm².
- The cable's bending radius should not be lower than 90 mm.

SIGNALS	CONDUCTOR COLOR	
+ V	Brown	
0 V	White	
CK	Green	
СК	Yellow	
D	Pink	
D	Grey	
SCH	Shield	

M	
2+2 mm	
sine wave 1 Vpp (optional)	
up to 1 μm *	
± 1 increment	
2 mm	
SSI – BiSS	
500 - 100 - 50 - 10 - 5 - 1 μm	
± 15 μm	
up to 30 000 mm	
300 m/min **	
200 m/s ² [55 ÷ 2 000 Hz]	
IP 67	
0 °C ÷ 50° C	
-20 °C ÷ 70° C	
100%	
5 ÷ 28 Vdc ± 5%	
150 mA _{MAX} (with R = 120 Ω)	
20 m ***	
see related table	
inversion of polarity and short circuits	
80 g	

Depending on CNC division factor. With a 1 μ m resolution, the maximum traversing speed becomes 90 m/min.

^{****} Ensuring a minimum power supply of 5 V to the sensor, the maximum cable length can be extended to 50 m.

Code	Project	Release	
ST02	A47-A	E	TECHNICAL DATASHEET

OUTPUT SIGNALS

Interface	SSI Binary – Gray	
Signals level	EIA RS 485	
Clock frequency	0.1 ÷ 1.2 MHz	
n	Position bit	
Tc	12 ÷ 45 µs	

Interface	BiSS C unidirectional	
Signals level	EIA RS 485	
Clock frequency	0.1 ÷ 2 MHz	
n	26 + 2 + 6 bit	
T _C	12 ÷ 45 μs	

CABLE

In case of cable extension, it is necessary to guarantee:

- the electrical connection between the body of the connectors and the cables shield;
- a minimum power supply voltage of 5 V to the sensor.

SENSOR DIMENSIONS

values in mm	MP200A	MP200A + CV103	MP200A + SP202
s	1.3	1.6	2.1
d	0.3 ÷ 1	0.7 _{MAX}	0.2 _{MAX}

- s = thickness
- d = distance to be maintained between sensor and surface of the magnetic band (or eventual cover/support)

SENSOR ALIGNMENT TOLERANCES

ORDERING CODE

MODEL

POLE POWER SUPPLY CABLE LENGTH, CABLE TYPE OUTPUT 528V **AGM** S₀ M₀₂ / S M 1 ٧ SC = without

OUTPUT SIGNALS

M = 2+2 mm

500 = 500 μm **100** = 100 μm **50** = 50 μm **10** = 10 μm

RESOLUTION

A = axial R = radial

CABLE

528V= 5 ÷ 28 V

\$0 = SSI programmable \$1 = SSI binary \$2 = SSI binary+even parity

\$3 = SSI binary+odd parity \$4 = SSI binary+error \$5 = SSI binary+even parity+error \$6 = SSI binary+odd parity+error

V = + 1 Vpp No cod. = no increm signal

INCREMENTAL

Mnn = length in m M02 = 2 m (standard) M50 = 50 m

= 6 wires (only serial)

= 10 wires (serial + analog)

ABSOLUTE MAGNETIC SENSOR AGM M1A 528V S0 V M02 / S SC

S7 = SSI Gray B1 = BiSS binary

CONNECTOR

connector
Cnn = progressive